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Abstract

In order to investigate the impacts of a concentration dependent static permittivity in

the Debye–Hückel theory, two electrostatic Helmholtz free energy models and four

activity coefficient models, with the ion-solvent interactions naturally included, are

derived under different assumptions. The effects of static permittivity and model

parameters are analyzed by predicting the mean ionic activity coefficients. It is found

out that it is reasonable to assume a constant static permittivity in deriving the elec-

trostatic Helmholtz free energy model but it is highly recommended to take the con-

centration dependence of static permittivity into account in subsequent calculations

of thermodynamic properties. The activity coefficient model derived in this way accu-

rately predicts the mean ionic activity coefficients of the investigated systems up to

0.1 mol/kg H2O, which indicates that the size parameters in the Debye–Hückel the-

ory might be determined in advance before it is integrated into a more complete

thermodynamic model.
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1 | INTRODUCTION

The Debye–Hückel theory1 is the first successful and probably the

most widely used model for electrostatic interactions when describing

an electrolyte solution, which is formed when electrolytes (e.g., salts)

are dissolved into a polar solvent or solvent mixture and they dissoci-

ate into ions completely or partially.2-20 Water is the most common

solvent in this category. Despite the fact that the theory was devel-

oped almost 100 years ago, both fundamental research on this theory

and application-oriented studies using this theory have been actively

conducted in recent years.21-31 An electrolyte solution behaves very

different from a non-electrolyte one, as it starts to deviate very much

from an ideal solution already at very low electrolyte

concentrations,32 which was the main reason of the development of

the Debye–Hückel theory.1,33 It is readily known from the references

cited above that different modifications had been developed for the

Debye–Hückel theory, most of which are, however, based on the

extended Debye–Hückel law or the limiting law.18 This is possibly

because, not until recently,34,35 the original version of the Debye–

Hückel theory had not been revisited. With these contributions, it has

become popular in using the original Debye–Hückel theory in thermo-

dynamic models of the equation of state type.26-30,36-38
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It has becoming accepted that a Born-type equation39 shall be

included in order to describe the ion-solvent interactions when modeling

an electrolyte solution, with either the Debye–Hückel or the mean spher-

ical approximation theory.22,23,29,37,40-48 It has been shown22,35 that a full

version of the Debye–Hückel theory naturally contains a contribution for

the ion-solvent interactions, which is essentially equivalent to the Born

equation used in most of the aforementioned references.45 In this sec-

tion, however, in order to distinguish these two different contributions,

the Debye–Hückel theory is still used to only represent the ion-ion inter-

actions, while the Born equation is used for the ion-solvent interactions.

More details are presented and discussed in the following sections. The

size parameters of ions are needed in both the Debye–Hückel theory

and the Born equation. Even though the Debye–Hückel theory was

derived in the size parameter of individual ions, which is called the dis-

tance of closest approach, it is common practice, also a misreading,35 to

use an equal value for both cation and anion of a salt. It was “discovered”

by Zarubin and Pavlov25 why the theory is blind to the size dissimilarity,

but it needs to be pointed out that this discovery was only based on the

extended Debye–Hückel law, which did not take the ion-solvent interac-

tions into account. There are discussions which size parameter shall be

used in the Debye–Hückel theory and the Born equation.37,45,49,50 The

same parameter was used in both contributions in some studies,22,35 and

different size parameters were used in some other cases.29,45,51

Both the Debye–Hückel theory and the Born equation are using the

so-called primitive approach, in which the solvent is considered a dielectric

continuum, characterized by its static permittivity, usually also known as

dielectric constant. In the original derivation of the Debye–Hückel theory,

the static permittivity was assumed constant. A Gibbs/Helmholtz, not

distinguished,33 free energy model was first obtained in the derivation and

other thermodynamic properties, for example, activity coefficients, could

be derived via well-established thermodynamic relations. Since then most

applications followed the same idea, especially the ones in the category of

activity coefficient models. When the static permittivity is constant, the

contribution from the Born equation to the activity coefficients is zero. The

static permittivity is in principle a complex function of concentration due to

the complicated interactions among solvent molecules and ions, for exam-

ple, the kinetic polarization deficiency, a debated topic,52,53 and the non-

local dielectric response.54 In most applications, an empirical correlation of

static permittivity is used.37 It is explicitly stated in the recent revisit35 that

the composition, temperature and volume dependence of the static per-

mittivity shall be taken into account after the Helmholtz free energy model

has been derived under the assumption of a constant static permittivity. In

this way, the ion-solvent interactions naturally comes into the theory.

Maribo-Mogensen et al.55,56 developed a theoretically sound approach to

calculate the static permittivity, which can be consistently integrated with

the association equation of state models. There have also been some stud-

ies which considered a concentration dependent static permittivity in

deriving the electrostatic Helmholtz free energy model. Hückel2 and Teitler

et al.57 extended the Debye–Hückel theory by assuming a linear

concentration-dependent static permittivity during the derivation, which

was criticized by Gronwall et al.58 and Helgeson et al.12 According to Shilov

and Lyashchenko,22 these studies were unfortunately ignored by the

experts of the field. Very recently, therefore, Shilov and Lyashchenko22 re-

visited and presented an approach to take a more general concentration

dependence of the static permittivity into account in deriving the free

energy model, with the ion-solvent interactions included as well.

In order to investigate the effects of using a concentration depen-

dent static permittivity in the Debye–Hückel theory, one unique feature

of this work is to derive four existing activity coefficient models in the

same framework, via Helmholtz free energy, and generalize them to use

symbolically independent size parameters of individual ions. Moreover,

to the best of our knowledge, it is the first time that the different exten-

sions and the full version of the original Debye–Hückel theory are com-

pared with each other using the same information of static permittivity.

We focus ourselves in aqueous solutions, with water being the only sol-

vent, of a single fully dissociated strong salt. Before systematically inves-

tigating the impacts of using a concentration dependent static

permittivity, it is discussed the effects of size parameters in the theory.

The same input information is used in all models and no parameters are

adjusted. Conclusions are given in the end.

2 | THEORY

2.1 | The Debye–Hückel theory

In the framework of the Debye–Hückel theory, the electrostatic contri-

bution to the Helmholtz free energy consists of two terms, one from

the ion-solvent interactions and the other from the interionic interac-

tions. Following the partial charging process,33,35,59 it can be written

Aelec =Aself +ADH

=
X
j

N j

ðz je

0

q j

4πε0εr

1
R j

dq j−
X
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N j

ðz je
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=
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z jedλ−
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λz je
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where Nj, qj, zj, Rj, and dj are the number, charge, valency (charge num-

ber), solvation radius, and the distance of closest approach of ion j. e is

the elementary charge, ε0 is the vacuum permittivity, and εr is the rela-

tive static permittivity of the solution. λ is the charging process param-

eter, from 0 to 1. κ is the inverse Debye screening length, defined by

κ2 =
1
kBT

1
ε0εr

1
V

X
j

N jq
2
j =

1
kBT

NAe2

ε0εr

1
V

X
j

n jz
2
j ð2Þ

where kB is the Boltzmann constant, T is the temperature, V is the

total volume. NA is the Avogadro constant, nj is the number of moles

of ion (or compound) j, apparently Nj = NAnj.

The first term of Equation (1) is known as self-energy35 or solva-

tion contribution,22 which was not included in the original derivation

of Debye and Hückel.1 If the discharging of ions in the vacuum is

taken into account, it becomes the famous Born equation,39 in which

way Rj is often called Born radius. Hereafter, the two terms are
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respectively referred as the self term and the DH term, as shown in

Equation (1). It is worth noticing that independent and individual size

parameters of ions are symbolically used in both terms. It is common

practice to assume the static permittivity of the solution constant dur-

ing the partial charging process, while a very recent work22 reminded

the possibility to include the concentration dependence under certain

assumptions.

When the static permittivity of the solution is constant during the

partial charging process, the self term is given by

Aself =
NAe2

4πε0εr

X
j

n jz2j
2R j

ð3Þ

And the DH term is obtained1

ADH = −
X
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N j

ð1
0

λz je
4πε0εr

λκ

1+ λκd j
z jedλ

= −
X
j

NAn jz2j e
2κ

4πε0εr

ð1
0

λ2

1 + λκd j
dλ

= −
NAe2

12πε0εr

X
j

n jz
2
j κ

3

κd j

� �3 ln 1 + κd j

� �
−κd j +

1
2

κd j

� �2� �( )

= −
NAe2

12πε0εr

X
j

n jz
2
j κχ j

ð4Þ

where χj is an auxiliary variable of the expression given in braces.

Michelsen and Mollerup35 presented essentially the same Equa-

tions (3) and (4) but with the same size parameters of ions in both the

self term and the DH term. They further emphasized that Aelec is only

one contribution to the total Helmholtz free energy but not the

excess Gibbs energy, and the integrations in Equation (1) have to be

made at constant temperature, volume and composition, so that the

other contributions to the total Helmholtz free energy are not

affected. After the electrostatic Helmholtz free energy model is

derived, the dependence of the static permittivity on temperature,

volume and composition has to be taken into account for subsequent

calculations of thermodynamic properties.35 The electrostatic contri-

bution to the chemical potential, therefore, can be obtained from
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The derivatives of Equations (3) and (4) with respect to the num-

ber of moles ni are
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where we have used
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Very recently, Shilov and Lyashchenko22 re-evaluated and gener-

alized the works of Hückel2 and Teitler and Ginsburg57 to include a

concentration dependent static permittivity during the partial charging

process by assuming the following relationship

εr = εr κwð Þ= εwf κwð Þ ð9Þ

where f(κw) is a function of κw
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1
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NAe2

ε0εw

1
V

X
j

n jz
2
j ð10Þ

that is, replacing εr with εw, the relative static permittivity of the sol-

vent, here water specifically, in Equation (2).

Apparently, κ and κw have the following relationship

κ =
κwffiffiffiffiffiffiffiffiffiffiffiffi
f κwð Þp ð11Þ

Shilov and Lyashchenko22 further assumed, during the partial

charging process, that the inverse Debye screening length and

the relative static permittivity depend on λ in the following

manner
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λκwffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
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ð12Þ

In this way, the self term is given by
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where θ is merely an auxiliary variable of the expression inside the

parentheses.

And the DH term is written
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where τj is again merely an auxiliary variable of the expression inside

the parentheses.

If the relative static permittivity of the solution is assumed inde-

pendent of salt concentration, that is, f(λκw) = 1, Equations (13) and

(14) simplify to
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and
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Conceptually they are the same to Equations (3) and (4), respec-

tively, and the only difference is the relative static permittivity of

water used in this case instead of that of the solution.

From Equations (5), (13), and (14), the electrostatic contribution

to the chemical potential is then obtained
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where
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with f
0
(λκw) the derivative of f with respect to its independent variable.

It is readily noticed that the explicit derivative of the relative

static permittivity of the solution with respect to the number of moles,

as in Equation (5), does not appear in this case, while the remaining

parts are very similar.

It needs to be pointed out, on one hand, that the equations

derived above present a generalized version of the work of Shilov and

Lyashchenko,22 in which average (or common) size parameters of ions

were used for both the self term and the DH term. On the other hand,

the electrostatic contribution to the Helmholtz free energy is used

instead of the Gibbs energy. Shilov and Lyashchenko22 pointed out

that the partial molar volume related part in the conversion between

Helmholtz free energy and Gibbs energy is small and can be

neglected, and Debye33 used these two thermodynamic functions

effectively without distinguishing them, because the solution was

considered incompressible. The same argument was adopted in a

recent review.37

2.2 | Activity coefficient models

Even though it has been a misreading since the original article, as

emphasized in Michelsen and Mollerup,35 it is common practice to

compare the predictions from the Debye–Hückel theory to the exper-

imental activity coefficients.6,22,25,45 This practice is followed in this

work, as the main purpose is to compare the various models derived

from and to evaluate the various impact factors in the Debye–Hückel

theory. Traditionally, the infinitely diluted solution is chosen as the

reference state for ions, in which way the activity coefficient of an ion

is obtained

lnγi =
1
RT

∂Aelec

∂ni

 !
T,V,n j

−
∂Aelec

∂ni

 !
T,V,n j ,ni!0

2
4

3
5

= lnγselfi + lnγDH
i

ð21Þ

where R is the gas constant, and γi is the activity coefficient of ion i.

Equation (21) is written in terms of an individual ion, for which

Zarubin and Pavlov25 argued that this is a serious limitation due to the

violation of electrical neutrality. We believe, however, that it is con-

ceptually feasible and mathematically more grounded to have activity

coefficients written in individual ions, and it shall be easier and more

flexible to be extended to multi-salt solutions as well.

Hereafter the activity coefficient model with a combination of

Equations (6) and (7) in Equation (21) is called DHFULL, which repre-

sents the full version of the original Debye–Hückel theory. The
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activity coefficient model with a combination of Equations (17) and

(19) in Equation (21) is named EDH2015, representing the extended

Debye–Hückel theory developed by Shilov and Lyashchenko22

in 2015.

When the explicit derivative of the relative static permittivity

with respect to the number of moles is ignored, that is, the second

term in Equation (6) and the first term in Equation (7), the contribution

of the self term to the activity coefficients reads

lnγselfi =
e2

4πkBTε0

z2i
2Ri

1
εr
−

1
εw

� �
ð22Þ

This is the same one as the Born equation and used in

literature.44,45,60

The contribution of the DH term to the activity coefficients

follows

1
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3
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The same equation has been given in Breil et al.61

When an average distance of closest approach (d±) is used for all

ions, it can be reformulated into the following famous form18,33,62

lnγDHi = −
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κ

1+ κd�
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where I is the ionic strength, and A and B are two auxiliary coefficients

given by

I =1000
1
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kBTε0εr
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where cj is the molar concentration (molarity) of ion j, defined by

cj = nj/1000V(mol/L).

Hereafter the activity coefficient model with a combination of

Equations (22) and (24) in Equation (21) is called EDH, representing

the traditional extended Debye–Hückel law.

By assuming that the volume of ions is zero, Fowler and

Guggenheim4 converted Equation (24) in terms of molality to

lnγDH
i = −

Am
ffiffiffiffiffi
Im

p

1+Bmd�
ffiffiffiffiffi
Im

p z2i ð27Þ

The molal ionic strength Im, and the coefficients Am and Bm are

accordingly given by

Im =
1
2

X
j

m jz
2
j ð28Þ

Am = 2πNAρwð Þ1=2 e2

4πkBTε0εr

� �3=2

Bm =
2NAe2ρw
kBTε0εr

� �1=2
ð29Þ

where mj is the molality of ion j, and ρw is the density of water at the

given temperature.

Hereafter the activity coefficient model with a combination of

Equations (22) and (27) in Equation (21) is called EDH-M, representing

the traditional extended Debye–Hückel law expressed in terms of

molality. For summary and easy reference, the derivations of the

activity coefficient models are illustrated in Figure 1.

2.3 | Implementation and parameters

It is straightforward to implement DHFULL, EDH and EDH-M by

following the given equations, so only is the implementation of

EDH2015 briefly explained here. Equation (10) can be rewrit-

ten as

κ2w =
1000
kBT

NAe2

ε0εw

X
j

c jz
2
j ð30Þ

For a single salt solution, it can be reorganized into

c=
kBT

1000
P
j
ν jz2j

ε0
NAe2

εwκ
2
w =Ωεwκ2w ð31Þ

where c is the molar concentration of the salt, νj is the stoichiometric

coefficient of ion j in the salt, and Ω is merely an auxiliary variable.

During the partial charging process, it becomes

c=Ωεw λκwð Þ2 ð32Þ

When the relative static permittivity of the solution is given, for

example, by a correlation,

εr cð Þ= εw + a1c+ a2c
3=2 + a3c

2 + a4c
5=2 ð33Þ

where a1, a2, a3, and a4 are correlation coefficients (constants).

The function f in Equation (12) is then calculated from

f λkwð Þ= εr cð Þ
εw

ð34Þ

Therefore,
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f 0 λkwð Þ= 1
εw

∂εr
∂c

∂c
∂ λκwð Þ ð35Þ

Following the works of Shilov and Lyashchenko22 and Boda

et al.,44,45,60 the correlations of relative static permittivity and the size

parameters of ions studied in this work are listed in Table 1 and

Table 2, respectively. dj is the distance of closest approach of ion j,

equal to two times of its Pauling radius,64 and d± is the average dis-

tance of closest approach of the cation and the anion of a given salt,

so it can be considered a salt-specific parameter. Rj is the Born radius

of ion j, taken from Julianna et al.,44 and R± is, similar to d±, the aver-

age Born radius. In this work, only single salt solutions are considered,

which means, according to Shilov and Lyashchenko,22

d� =
1
2

d+ + d−ð Þ

R� =
1
2

R+ +R−ð Þ
ð36Þ

where d+ and d− are dj of cation and anion, and R+ and R− are Rj of cat-

ion and anion, respectively. The mean ionic activity coefficient of a

salt is given by

lnγ� =
1

ν+ + ν−
ν+ lnγ + + ν− lnγ−ð Þ ð37Þ

where ν+ and ν− are stoichiometric coefficients of cation and anion,

respectively.

F IGURE 1 Illustration of the derivation process of the activity coefficient models. DHFULL denotes the full version of the original Debye–
Hückel theory,1,35 EDH and EDH-M represent the traditional extended Debye–Hückel law with molar concentration18,62 and molality (M)4 for
the ionic strength, respectively, while EDH2015 is for the model developed by Shilov and Lyashchenko22 in 2015 but generalized to be able to

use individual size parameters of ions [Color figure can be viewed at wileyonlinelibrary.com]

TABLE 1 Correlations of the relative static permittivity

Salt Correlation Notation Ref

NaCl εr = 78.4 − 16.2c + 3.1c3/2 Na-C1 22, 44, 63

NaCl εr = 78.65 − 15.45c + 3.76c3/2 Na-C2 45

LiCl εr = 78.4 − 15.5c + 1.96c2 − 0.306c5/2 Li-C1 22, 63

CaCl2 εr = 78.65 − 34c + 10c3/2 Ca-C1 45

TABLE 2 The size parameters of ions
Ion dj (10

−10m) d± (10
−10m) Rj (10

−10m) R± (10
−10m) Ref

Na+/Cl− 1.90/3.26 2.76 1.62/2.26 1.38 22, 63

Li+/Cl− 1.20/3.26 2.41 1.30/2.26 1.205 44

Ca2+/Cl− 1.98/3.26 2.80 1.71/2.26 1.40 44
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It is common that the molal mean ionic activity coefficient (γm� ) is

reported in literature, and they are related via

γ� = γm� 1+ ν+ + ν−ð ÞmMH2O½ � ð38Þ

where m is the molality of the salt (mol/kg H2O) and MH2O is the

molecular weight of water (kg/mol).

The correlations of density from Novotný et al.65 have been used

for water as well as in converting molar concentration (c) and molality

(m) of aqueous salt solutions in this work.

3 | RESULTS AND DISCUSSION

The three activity coefficient models, EDH2015, EDH, and EDH-M,

are compared for predicting the mean ionic activity coefficients of

NaCl, LiCl, and CaCl2 at 298.15 K in Figure 2, in which average size

parameters of ions are used in both the self term and the DH term. It

is traditional practice, also more physically consistent, to use the static

permittivity of water in Equation (24) of EDH and Equation (27) of

EDH-M, which was also the case in one comparison reported by

Shilov and Lyashchenko.22 In this work, however, the assumptions

made for model derivation are relaxed, and the same correlation of

static permittivity is used in all three models for each salt, for which

the results from EDH and EDH-M are indicated by (εr) in the legend.

The predictions from EDH using the static permittivity of water are

also added in Figure 2 and denoted by EDH (εw). It is readily seen that

EDH (εw) presents much smaller predictions, because the contribution

from the self term, Equation (22), disappears due to a concentration

independent static permittivity, as pointed out in the Introduction.

EDH-M (εr) gives very similar but slightly smaller values, somewhat

closer to the experimental data, depending on the concentration and

the system. Moreover, it is surprising to see that EDH (εr) predicts

exactly the same results as EDH2015, as the concentration depen-

dence of static permittivity is ignored in the integration during the

partial charging process as well as in the calculation of the derivatives

with respect to the number of moles, as illustrated in Figure 1. For a

clearer visualization, the results of EDH (εr) are plotted by points, and

they will be denoted by EDH only, that is, without (εr), in the

following text.

Regarding the use of individual or average size parameters of ions

in the self term, several approaches have been investigated in the lit-

erature. Shilov and Lyashchenko22 used average size parameters in

both the self term and the DH term when they presented EDH2015,

while Boda and co-workers suggested using an individual size parame-

ter in the self term.44,45,60 In a following study, Shilov and

Lyashchenko50 discovered that this suggestion in general failed to

predict experimental data for alkali metal iodide solutions. Three com-

binations of using an individual or average size parameter in

EDH2015 are compared in Figure 3 for predicting the mean ionic

activity coefficients. It is readily seen that the size parameters show

significant effects on the results. Individual size parameters in both

the self term and the DH term give the best results for NaCl, average

(a)

(b)

(c)

F IGURE 2 Comparison of the three models EDH2015, EDH and
EDH-M for the mean ionic activity coefficients of (a) NaCl, (b) LiCl, and
(c) CaCl2. The experimental data are taken from Clarke et al.66 for NaCl,
Hamer et al.67 for LiCl and Staples et al.68 for CaCl2. The average size
parameters (Table 2) are used in all cases. The first correlation (Na-C1,
Table 1) of the relative static permittivity is used for the aqueous
solution of NaCl [Color figure can be viewed at wileyonlinelibrary.com]

LEI ET AL. 7 of 13

http://wileyonlinelibrary.com


(a)

(b)

(c)

F IGURE 3 The effect of using the individual or average size

parameters of ions in the self term and the DH term. The results are
shown using EDH2015 for (a) NaCl, (b) LiCl, and (c) CaCl2. The first
correlation (Na-C1, Table 1) of the relative static permittivity is used
for the aqueous solution of NaCl [Color figure can be viewed at
wileyonlinelibrary.com]

(a)

(b)

(c)

F IGURE 4 Mean ionic activity coefficients of (a) NaCl, (b) LiCl,
and (c) CaCl2 from EDH2015, EDH, and DHFULL. The results from
EDH are plotted in points for a clearer visualization. The first
correlation (Na-C1, Table 1) of the relative static permittivity is used
for the aqueous solution of NaCl [Color figure can be viewed at
wileyonlinelibrary.com]
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size parameters in both the self term and the DH term present the

best results for LiCl, and a combination of an individual size parameter

in the self term and an average size parameter in the DH term shows

the best results for CaCl2. In terms of quantitative results, therefore, it

is hard to make a conclusion which size parameters shall be used. It is

worth noticing that using average size parameters EDH2015 always

predicts larger values than using individual size parameters. Even

though Zarubin and Pavlov25 discovered that the average size param-

eter gave the best fitting to the mean ionic activity coefficients, it has

to be pointed out that the fitting was based on the DH term only in

their work. Michelsen and Mollerup35 pointed out that it has been a

common misreading that the Debye–Hückel theory is restricted to

ions of equal distance of closest approach. Simonin48 indicated that it

is a more restrictive approach to use individual size parameters. More-

over, it has been shown in the Theory section that it is possible to

derive the models using individual size parameters, and we believe

that it is more rigorous as well as more flexible, especially when exten-

ding to multi-salt systems, to use individual size parameters in both

terms. Therefore, individual size parameters will be used in the follow-

ing investigations.

Figure 4 presents the predictions of the mean ionic activity coeffi-

cients from EDH2015, EDH and DHFULL with individual size parame-

ters in both the self term and the DH term. On one hand, DHFULL

always predicts larger mean ionic activity coefficients than EDH2015

and EDH. It is hard to conclude, however, if EDH2015 is better than

DHFULL, because EDH2015 and DHFULL respectively perform bet-

ter in NaCl and LiCl, while they show equally good performance on

CaCl2, over a wide range of molality. It can be readily seen, on the

other hand, that EDH2015 and EDH again give the same results, inde-

pendent on which size parameters are used. However, the fact that

EDH2015 and EDH predict the same mean ionic activity coefficients

does not necessarily imply that their terms give the same contribu-

tions to the activity coefficients of individual ions. Figure 5a,b respec-

tively shows the contributions of the self term and the DH term to

the activity coefficients. The results of the salt are plotted in points

for a clearer visualization. It has been proved by Valiskó and Boda45

that the self term in EDH2015 gives the same contribution to the

mean ionic activity coefficients as Equation (22) but gives slightly

larger values for the bigger ion and slightly smaller values for the

smaller ion. This observation is verified in Figure 5a, but it needs to be

pointed out that in this case the differences of the self term in these

two models are noticeable for the contribution to the activity coeffi-

cients of single ions. Figure 5b presents the same analysis for the DH

term. The DH term in EDH2015 predicts smaller values for the bigger

ion and larger values for the smaller ion than that of EDH. In this way,

they give the same contributions to the mean ionic activity coeffi-

cients. We believe that these results are due to the assumptions made

in Equations (9) and (12), which were neither explained in detail nor

(a)

(b)

F IGURE 5 Comparisons of (a) the self term and (b) the DH term
of EDH2015, EDH, and DHFULL for the aqueous solution of LiCl. The
points represent the calculated results of the salt for a clearer
visualization [Color figure can be viewed at wileyonlinelibrary.com]

F IGURE 6 The effect of using different correlations of the
relative static permittivity (see Table 1) in EDH2015 and DHFULL for
the aqueous solution of NaCl [Color figure can be viewed at
wileyonlinelibrary.com]
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justified in the original literature.22 These assumptions led to the rela-

tionship between the molar concentration (c) and the charging process

parameter (λ) in Equation (32), which was not reported in the original

literature22 but in our opinion is a rather strong assumption. It would

be of importance in future works to investigate whether these

assumptions can be justified or not, especially theoretically, besides

merely comparing with experimental data of some systems with

selected parameters. It could be suggested that EDH may replace

EDH2015 as long as the mean ionic activity coefficients are the only

concern, for example, for engineering phase equilibrium calculations

with the activity coefficient models, and it even offers more flexibility,

for example, for multi-salt systems. It can be readily seen from

Figure 5 that the self term and the DH term in DHFULL respectively

predict larger and smaller activity coefficients of single ions as well as

of the salt than those of EDH2015, which firstly imply that the second

term in Equation (5) plays a significant role. Moreover, the fact that

DHFULL always predicts larger values than EDH2015 as shown in

Figure 4 indicate that the second term in Equation (5) has a more pro-

nounced impact on the self term.

Different correlations of the relative static permittivity have been

used by different researchers22,60 for the aqueous solution of NaCl.

Originally, Boda and co-workers44 used the correlation Na-C1, and

later they switched to another correlation Na-C2, with a weaker con-

centration dependence, because it was believed more reasonable.60

Figure 6 presents the mean ionic activity coefficients of NaCl

predicted from EDH2015 and DHFULL with the two correlations

listed in Table 1. There is no doubt that the static permittivity plays a

significant role in both EDH2015 and DHFULL. It is known from Boda

and co-workers60 that the correlation Na-C2 gives larger static per-

mittivity, so Figure 6 shows that the larger the static permittivity is

used the smaller the activity coefficients are, and the difference of

these two correlations becomes more pronounced as the solution gets

concentrated.

Even though the predictions from these models have been com-

pared to the experimental mean ionic activity coefficients over a wide

range of concentration and good performance might be obtained with

carefully chosen input information, it has to be emphasized that Equa-

tion (21) is in principle only valid for dilute solutions. When the elec-

trolyte solution gets concentrated, other contributions, for example,

volume exclusion and short-range interactions, shall be taken into

account. Figure 7 presents a further comparison of EDH2015 and

DHFULL in the low concentration region. It can be seen that the pre-

dictions from EDH2015 and DHFULL diverge from each other around

m = 0.01 mol/kg H2O. Up to m = 0.1 mol/kg H2O, EDH2015 and

DHFULL present equally good predictions for the mean ionic activity

coefficients of NaCl using both correlations. It is worth noticing that

the differences of these two correlations are more pronounced with

DHFULL than with EDH2015. DHFULL gives better predictions for

LiCl and CaCl2. More importantly, DHFULL predicts reasonably accu-

rate mean ionic activity coefficients up to m = 0.1 mol/kg H2O for

NaCl and m = 0.2 mol/kg H2O for LiCl and CaCl2. It is usually believed

that the traditional Debye–Hückel theory (EDH (εw)) can describe the

activity coefficients for dilute solutions only, for example,

m = 0.01 mol/kg H2O for NaCl using the parameters given in this

work. When the concentration dependence of static permittivity is

taken into account, as derived and discussed above, the Debye–

(a)

(b)

(c)

F IGURE 7 Mean ionic activity coefficients of (a) NaCl, (b) LiCl,
and (c) CaCl2 in the low concentration region from EDH2015 and
DHFULL [Color figure can be viewed at wileyonlinelibrary.com]
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Hückel theory naturally contains the ion-solvent interactions. This

may have extended the application limit of the theory. Moreover, the

extension may have been even more pronounced when the Born radii

are adjusted to the Gibbs energy of solvation,48,60 and an adjustable

parameter in the self term is supported by a recent in-depth analysis

of the Born equation.48 The results indicate that it is reasonable to

assume a constant static permittivity during the partial charging pro-

cess to derive the electrostatic Helmholtz free energy model, and

then to relax this assumption in the subsequent property calcula-

tions.35 In this way, DHFULL still presents a thermodynamically con-

sistent approach, and it can be integrated into a thermodynamic

model, for example, an equation of state,29 with other molecular

interactions considered. The integrated model shall then offer the

capability to describe various experimental data over a wide range

of temperature, pressure and concentration.30,38,49,51,69,70 It also

provides the flexibility to adjust the size parameters together with

other model parameters to the experimental data if this becomes

necessary.

4 | CONCLUSION

In this work, the electrostatic Helmholtz free energy from the original

Debye–Hückel theory is derived by assuming a composition indepen-

dent static permittivity. It is recommended that the temperature, vol-

ume and composition dependence of the static permittivity is taken

into account in the subsequent calculations of thermodynamic proper-

ties. This model is denoted as DHFULL, representing the full version

of the original Debye–Hückel theory, with the ion-solvent interactions

included. If the concentration dependence of the static permittivity is

further ignored and the ions are assumed having the same distance of

closest approach in deriving the electrostatic activity coefficient

model, the traditional extended Debye–Hückel law can be built, and it

is called EDH. An extension of the Debye–Hückel theory developed

in 2015, with a concentration dependent static permittivity in deriving

the electrostatic Helmholtz free energy model, is generalized using

individual size parameters of ions, and it is denoted as EDH2015.

EDH2015 and EDH always give the same mean ionic activity

coefficients, and DHFULL predicts larger values than the other two

models, as long as the same input information is used. In terms of

quantitative results compared with the experimental mean ionic activ-

ity coefficients, it is hard to conclude which model presents the best

results over a wide range of concentration, because the predictions

are significantly affected by the size parameters and the static permit-

tivity. Individual size parameters are recommended in DHFULL for a

straightforward, consistent and flexible extension to multi-salt solu-

tions, which is a limitation of EDH2015 in its current form. We also

believe that the activity coefficients predicted from the Debye–

Hückel theory shall not be compared to the experimental data of con-

centrated solutions, in which contributions from other molecular

forces must be taken into account. DHFULL has shown accurate pre-

dictions for the mean ionic activity coefficients up to 0.1mol/kgH2O,

in which region other forces except those considered in the Debye–

Hückel theory might be neglected for ions for the investigated sys-

tems. This tells that it might be reasonable to determine the size

parameters in the Debye–Hückel theory in advance before it is inte-

grated into a more complete thermodynamic model, while the picture

might be changed when other properties, for example, density, also

become important to describe.
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